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(57) ABSTRACT

Pretraining for a DBN initializes weights of the DBN (Deep
Belief Network) using a hybrid pre-training methodology.
Hybrid pre-training employs generative component that
allows the hybrid PT method to have better performance in
WER (Word Error Rate) compared to the discriminative PT
method. Hybrid pre-training learns weights which are more
closely linked to the final objective function, allowing for a
much larger batch size compared to generative PT, which
allows for improvements in speed; and a larger batch size
allows for parallelization of the gradient computation, speed-
ing up training further.
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HYBRID PRE-TRAINING OF DEEP BELIEF
NETWORKS

BACKGROUND

Neural networks attempt to model or replicate human
thought processes in programmed logic executable by a com-
puter. Neural networks, are typically employed in pattern
matching such as speech and facial recognition. Generally,
results are obtained in terms of likely candidates or matches,
rather than conventional programmed logic that responds
rigidly to deterministic information. Stochastic values inject
an element of probability or randomness for allowing neural
networks to arrive at a “most likely” conclusion to complex
analytical tasks.

Deep belief networks are probabilistic models that are
composed of multiple layers of stochastic, latent variables.
The latent variables typically have binary values and are often
called hidden units or feature detectors. The top two layers
have undirected, symmetric connections between them and
form an associative memory. The lower layers receive top-
down, directed connections from the layer above. The states
of the units in the lowest layer represent a data vector.

Significant properties of deep belief networks include an
efficient, layer-by-layer procedure for learning the top-down,
pre-trained weights that determine how the variables in one
layer depend on the variables in the layer above. After learn-
ing, the values of the latent variables in every layer can be
inferred by a single, bottom-up pass that starts with an
observed data vector in the bottom layer and uses the weights
in the reverse direction.

Further, pre-training of deep belief networks occurs one
layer at a time by treating the values of the latent variables in
one layer, when they are being inferred from data, as the data
for training the next layer. This efficient, so-called “greedy”
learning can be followed by, or combined with, other learning
procedures that fine-tune all of the weights to improve the
generative or discriminative performance of the whole net-
work.

Discriminative fine-tuning of deep belief networks can be
performed by adding a final layer of variables that represent
the desired outputs and backpropagating error derivatives.
When networks with many hidden layers are applied to
highly-structured input data, such as images, backpropaga-
tion works much better if the feature detectors in the hidden
layers are initialized by learning a deep belief network that
models the structure in the input data

Conventional language processing receives user speech
and processes the received voice signals into text, typically
represented as an alphanumeric string (text) of characters in a
target language for which the language processing applica-
tion is configured. Language processing may be employed in
a variety of contexts by supplementing or replacing conven-
tional keyboard input with a speech recognition component or
module for converting speech into text. Speech recognition
capabilities therefore accompany other production applica-
tions for providing an alternate input path to allow spoken
commands and data as an alternative to manual keyboard
entry. The speech recognition component executes as a lan-
guage processing application in communication with the pro-
duction application for which they perform the speech recog-
nition.

SUMMARY

Neural networks, and in particular deep belief networks
(DBNs), are trained before being employed in production
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2

systems for decoding input. The training process is an itera-
tive cycle of input samples illustrative of expected outputs.
From the training, the network “learns” the inputs and corre-
sponding likely outputs to enable decoding of actual data in
the corresponding production system. Learning is an
extended process, often taking several hours or more, and
occurs in stages. Configurations herein are based, in part, on
the observation that conventional approaches to training
DBNs suffer from the shortcoming of extended duration and
result in learned DBNs, or models, that exhibit high error
rates, such as word error rates (WERs) in the case of a pro-
duction application aimed at speech recognition.

Deep Belief Networks (DBNs) have gained increasing
popularity in acoustic modeling over the past few years,
showing improvements between 5-20% relative over state of
the art Gaussian Mixture Model (GMM)/Hidden Markov
Model (HMM) systems. However, DBNs are usually trained
serially using stochastic gradient descent (SGD) and are com-
putationally expensive to train, particularly on large vocabu-
lary tasks.

Pre-training (PT) of deep belief networks (DBNs) is typi-
cally done unsupervised and generatively, and thus the
learned weights are not linked to the final supervised objec-
tive function. Discriminative PT addresses this issue and
therefore requires fewer iterations of fine-tuning compared to
generative PT. However, in discriminative PT, weights in
lower layers are not general enough compared to generative
PT, and thus discriminative PT methods perform slightly
worse compared to generative PT methods. Alternatively,
disclosed further below is a hybrid PT methodology, combin-
ing the benefits of both generative and discriminative PT.
Another benefit of hybrid PT is that it creates weights that are
more closely linked to the fine-tuning objective function, thus
allowing us to use a very large batch size during fine-tuning.
This allows for methods like parallel stochastic gradient
descent to be effective, resulting in a large speedup in fine-
tuning training time. Experimental results indicate that com-
bining hybrid PT with a larger batch size and parallel SGD
allows for a fine-tuning speedup of 3 times compared to a
generatively PT DBN.

DBN training typically consists of first generatively learn-
ing a set of unsupervised weights via Restricted Boltzmann
Machines (RBMs), followed by a supervised discriminative
fine-tuning back-propagation step. One reason DBN training
is slow is that the generative pre-trained weights are not
linked to the final cross-entropy objective function during
fine-tuning. Recently, various studies performed pre-training
in a discriminative fashion, where weights are pre-trained
using the cross-entropy objective function. While some stud-
ies show that doing discriminative pre-training and then fine-
tuning allows for slightly better results compared to doing
generative RBM pre-training and then fine-tuning, others
tend to suggest that discriminative pre-training degraded per-
formance compared to generative pre-training.

One shortcoming with performing discriminative pre-
training is that at every layer, weights are learned so as to
minimize the cross-entropy of they system. This means that
weights learned in lower layers are potentially not general
enough, but rather too specific to the final DBN objective.
Having generalized weights in lower layers has been shown to
be helpful. Specifically, generalized concepts, such as edges,
aretypically captured in lower layers and more discriminative
representations such as different faces, are captured in higher
layers.
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Disclosed herein is a method of pretraining for a DBN that
encompasses initializing weights of the DBN using a hybrid
pre-training methodology. The advantages of this pre-train-
ing is the following:

(1) Generative component of hybrid pre-training allows the
hybrid PT method to have better performance in WER com-
pared to the discriminative PT method. (2) Hybrid PT learns
weights which are more closely linked to the final objective
function, allowing for a much larger batch size compared to
generative PT, which allows for improvements in speed; and
(3) A larger batch size allows for parallelization of the gradi-
ent computation, speeding up training further.

Alternate configurations of the invention include a multi-
programming or multiprocessing computerized device such
as a workstation, handheld or laptop computer or dedicated
computing device or the like configured with software and/or
circuitry (e.g., a processor as summarized above) to process
any or all of the method operations disclosed herein as
embodiments of the invention. Still other embodiments of the
invention include software programs such as a Java Virtual
Machine and/or an operating system that can operate alone or
in conjunction with each other with a multiprocessing com-
puterized device to perform the method embodiment steps
and operations summarized above and disclosed in detail
below. One such embodiment comprises a computer program
product that has a non-transitory computer-readable storage
medium including computer program logic encoded as
instructions thereon that, when performed in a multiprocess-
ing computerized device having a coupling of a memory and
aprocessor, programs the processor to perform the operations
disclosed herein as embodiments of the invention to carry out
data access requests. Such arrangements of the invention are
typically provided as software, code and/or other data (e.g.,
data structures) arranged or encoded on a computer readable
medium such as an optical medium (e.g., CD-ROM), floppy
or hard disk or other medium such as firmware or microcode
in one or more ROM, RAM or PROM chips, field program-
mable gate arrays (FPGAs) or as an Application Specific
Integrated Circuit (ASIC). The software or firmware or other
such configurations can be installed onto the computerized
device (e.g., during operating system execution or during
environment installation) to cause the computerized device to
perform the techniques explained herein as embodiments of
the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following descrip-
tion of particular embodiments of the invention, as illustrated
in the accompanying drawings in which like reference char-
acters refer to the same parts throughout the different views.
The drawings are not necessarily to scale, emphasis instead
being placed upon illustrating the principles of the invention.

FIG. 1 is a context diagram of a language processing envi-
ronment suitable for use with configurations disclosed herein

FIG. 2 is a flowchart of pre-training a DBN as disclosed
herein;

FIG. 3 is an example of a simple neural network;

FIG. 4 is an example of a DBN as disclosed herein;

FIG. 5 shows hidden layers ofhybrid pretraining as defined
herein;

FIG. 6 shows performance improvements of hybrid pre-
training; and

10

20

25

30

35

40

45

50

55

60

65

4

FIGS. 7 and 8 are a flowchart of hybrid pre-training as
disclosed herein.

DETAILED DESCRIPTION

Deep belief networks are often employed in a production
system that employs the trained network in conjunction with
an application on a host device such as a user computing
platform. The application employs the trained network for
decoding input from the application and generating output
indicative of the result based on the previously learned infor-
mation. For example, FIG. 1 is a context diagram of an
example language processing environment 100 suitable for
use with configurations disclosed herein. Referring to FI1G. 1,
in the language processing environment 100, a production
application 110 employs a language processing interface 112
for language processing capabilities to convert speech to text.
The production application 110 typically executes on a user
device 120 at the bequest of a user 122, and may be, for
example, a cellphone 120-1, laptop or desktop computer 120-
2,PDA 120-3, settop box 120-4 in conjunction with cable TV,
or other suitable device. A language processing server 130 is
accessible via the language processing interface 112, typi-
cally via an Internet 114 or other electronic connection 118,
and invokes the DBN in the form of a language model 132.
Alternatively, the language processing capability may be
accessible directly to the production application 110 via a
repository 129, if sufficient computing resources are avail-
able.

As indicated above, when performing generative pre-train-
ing, weights are learned in an unsupervised fashion and are
not linked to the final objective of the DBN (i.e. to minimize
cross-entropy during fine-tuning). Recently, certain
approaches have performed pre-training using a layerwise
backpropagation methodology, where pre-trained weights
are better linked to the final DBN objective function. In this
methodology, a 1-layer DBN was trained using backpropa-
gation with discriminative labels. Then the softmax layer was
thrown away and replaced by another randomly initialized
hidden layer and softmax layer on top, and the new is dis-
criminatively trained. This discriminative training is done
greedy-wise similar to RBM pre-training. It has been found
that by doing discriminative pre-training and then discrimi-
native fine-tuning, it is possible to achieve slightly better
results than doing generating RBM pre-training and discrimi-
native fine-tuning.

A shortcoming with performing discriminative pre-train-
ing is that at every layer, weights are learned so as to minimize
the cross-entropy of they system. This means that weights
learned in lower layers are potentially not general enough, but
rather too specific to the final DBN objective. Having gener-
alized weights in lower layers has been shown to be helpful.
Specifically, generalized concepts, such as edges, are typi-
cally captured in lower layers and more discriminative repre-
sentations such as different faces, are captured in higher lay-
ers.

Disclosed further below are pre-training strategy that com-
bines both the generative and discriminative benefits in a
hybrid manner. In the disclosure below, notations include the
following. Specifically, v will refer to visible unit, h to hidden
unit, 1 to label, and W to the weight vector between v and h.

Conventional approaches have addressed performing a
hybrid generative+discriminative fine-tuning. Configurations
herein extend this concept to pre-training as well. Specifically
weights are learned to maximize F=a log P(llv)+log P(v,]).
Here P(11v) is referred to as a discriminative component and is
actually the same as the cross-entropy objective function
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typically used for DBN training. The term P(v,1) is the gen-
erative component and is learned via contrastive divergence.
The conventional approaches explore this hybrid training
approach for fine-tuning a one layer DBN; in contrast
approaches below employ greedy-wise pre-training using
this hybrid approach. Specifically, in greedy-wise pre-train-
ing, after two layers are trained, we throw out the softmax
layer and replace it by another randomly initialized hidden
layer and softmax layer on top. Greedywise hybrid training is
performed now given the new layers.

Fine-tuning (also known as backpropagation) is most com-
monly performed using stochastic gradient descent (SGD). In
this approach, a gradient is estimated using a subset of data
points (referred to as a mini-batch) from the training set, and
weights are subsequently updated. This is shown more clearly
in Equation (1) where w is the weights, N refers to the mini-
batch size, and Ji(w) is the gradient computed with respect to
a single training example:

N
wi=w-— ozz VI W
=1

SGD algorithms sweep through the training set, updating
weights after each mini-batch. Weights are most commonly
initialized randomly or generatively, and therefore are in a
poor space relative to the weight learned after fine-tuning has
completed. This requires the batch size to be small in order to
ensure a reliable estimate of the gradient is obtained.

However, when weights are pre-trained using a discrimi-
native or hybrid PT method, the weights fall in a much better
space compared to generatively PT weights. This allows for a
larger batch size during fine-tuning, meaning that the gradient
is computed over a larger number of training instances now.

In the above equation, the gradient is calculated as the sum
of gradients from individual training examples. When the
batch size is large (and thus number of training examples
large), this allows the gradient computation to be parallelized
across multiple worker computers. Specifically, on each
worker a gradient is estimated using a subset of training
examples, and then the gradients calculated on each computer
are added together by a master computer to estimate the total
gradient.

In operation, a comparison was performed between the
performance involving generative, discriminative or hybrid
pre-training, followed by standard fine-tuning backpropaga-
tion. Results in Table 1 indicate that discriminative PT per-
forms slightly worse than generative PT, confirming the
hypothesis that generalization of pre-trained weights is
important. Notice that when including both generalization
and discrimination benefits with hybrid PT, the WER
improves over discriminative PT.

TABLE I
METHOD WER
Generative PT 19.6
Discriminative PT 19.7
Hybrid PT 19.5

Table II shows a tradeoff between WER and batch size for
generative and hybrid PT, since these two methods have the
better WERS. Notice that after a batch size of 2,048 the WER
of'the generative PT method degrades whereas the hybrid PT
method does not.
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TABLE II
Batch Size Generative PT WER Hybrid PT WER
512 19.6 19.5
2048 20.0 19.6

After identifying that the batch size could be made larger with
hybrid PT compared to generative PT, the next question was
how large can we make the batch size before a degradation in
accuracy occurs. Accordingly, a fine-tuning was performed
with a batch size 0f 1,024 for two epochs before increasing the
batch size further. As shown in Table II, it was noted that even
atalarge batch size of 20K or 30K, the WER does not degrade
substantially.

TABLE III
Batch Size Hybrid PT, WER
10,240 19.6
15,360 19.7
20,480 19.8
30,720 19.9

Therefore, a large batch size implies that the gradient can
be parallelized. Table IV below shows an improvement that
with a large batch size, the fine-tuning training time can be
improve by a factor of more than 1.5 using parallel SGD over
serial SGD for the same batch size. In addition, hybrid
PT+parallel SGD provides a large speedup over generative
pre-training. The fine-tuning training time for generative PT
with a batch size of 512, a commonly used size in the litera-
ture, is roughly 24.7 hours. With hybrid PT and a batch size of
30K, therefore, the training time is roughly 7.9 hours, a 3x
speedup over generative PT with little loss in accuracy

TABLE 1V
Serial SGD Parallel SGD
Fine-Tuning Fine-Tuning # Times
Batch Size Training Time (hrs) Training Time (hrs) Faster
20,480 16.4 10.0 (4 workers) 1.6%
30,720 14.5 7.9 (5 workers) 1.8%

FIG. 2 is a flowchart of pre-training a DBN as disclosed
herein. Referring to FIGS. 1 and 2, In a deep belief network
(DBN), the method for training the DBN for operational
decoding as disclosed herein includes pre-training initial
weights based on determined optimal weights, as depicted at
step 200, and identifying, during pre-training, a batch size and
number of parameters corresponding to the initial weights,
such that the batch size is larger than that allowable for purely
generative pre-training, as shown at step 201. The method
then invokes a plurality of machines for performing training
in parallel fashion, as disclosed at step 202, as the batch size
is substantially large to allow for efficient parallelization. The
hybrid pre-training employs both discriminative (supervised)
and generative (unsupervised), which is beneficial because
the weights are more closely linked than pre-training, but not
too greedy.

In the example configuration, the pre-training may be per-
formed on computer apparatus such as a the language pro-
cessing server 130 for training a deep belief network (DBN)
for operational decoding including a memory including an
input layer for pre-training initial weights based on deter-
mined optimal weights. The language processing server 130
includes pre-training logic for identifying, during pre-train-
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ing, a batch size and number of parameters corresponding to
the initial weights, the batch size larger than that allowable for
purely generative pre-training, and further comprises a plu-
rality of machines, each having at least one processor, respon-
sive to invocation for performing training in parallel fashion.

FIG. 3 is an example of a simple neural network. Referring
to FIG. 3, a DBN or other type of neural network is typically
expressed as a directed graph 140 having nodes 142-1 . . .
142-4. Input nodes 142-1 and 142-2 represent parameters to
node 142-4, which then fires if a threshold is met by the input
nodes 142-1, 142-2 (142 generally). A bias unit 142-3 injects
a stochastic element to node 142-4, and an output 144 is
triggered if the threshold is met. Each output 144 may serve as
an input to a successive node 142, as discussed further below.

In conventional approaches, so called mini-batch SGD
remains the most popular approach for cross-entropy fine-
tuning.

B
wi=w— yz grad;(w, v;)
i=1

Shortcomings of this approach are that the gradient cannot be
parallelized because the batch size is small (100-1,000
frames), the number of parameters is large (10-50 M), and
thus the cost to compute gradient and communicate param-
eters is high.

FIG. 4 is an example of a DBN as disclosed herein. Refer-
ring to FIGS. 3 and 4, the DBN 150 includes a plurality of
layers 152-1 . .. 152-3 (152 generally). Each layer includes
one or more nodes 142. The bottom, or first layer 152-1
represents input parameters, and the output 144-1 . . . 144-3
(144 generally) from the last, or top layer, represents the
output from the DBN 150. One or more hidden layers 152-1
represent sets of nodes that receive input from the output of
other nodes and provide input to successive nodes 142. As
indicated above, the number of hidden layers may vary; typi-
cally a DBN includes at least two. The output 144 from the
last, or top layer, represents the output from the DBN 150.

FIG. 5 shows hidden layers of hybrid pre-training as
defined herein. Referring to FIG. 5, conventional pre-training
is usually performed generatively and learned weights are not
linked to final objective function (CE). One alternate
approach considers doing greedy layer-wise discriminative
pre-training, which provides the advantage that weights
linked to final objective function, thus requiring fewer itera-
tions of fine-tuning. However, the weights in the lower layers
not sufficiently general and having generalized concepts in
lower layers is helpful, thus resulting in possible degradation
in WER

In contrast, configurations herein disclose hybrid pre-train-
ing, which perform layer-wise training using the discrimina-
tive and generative objective function:

P(labellinput)+aP(input,label)

Continuing to refer to FIG. 5, a plurality of steps 154-1 . . .
154-3 (154 generally) introduces hybrid pre-training at inter-
mediate layers 152-11 . . . 152-14. As in FIG. 4, the interme-
diate layers 152-11 . .. 152-11 other than the input and output
layers are hidden layers representing the benefits of the hybrid
pre-training.

FIG. 6 shows performance improvements of hybrid pre-
training. Typically when generative pre-training is per-
formed, a mini-batch size between 128-512 may be is used.
The intuition, which we will show experimentally, is the
following: If the batch size is too small, parallelization of
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matrix-matrix multiplies on CPUs is inefficient. A batch size
which is too large often makes training unstable. However,
when weights are in a much better initial space, a larger batch
size can be used, speeding up training time further. FIG. 6
shows the WER 170 as a function of batch size 172 for both
generative 174 and hybrid 176 pre-training methods. It
should be noted that, after a batch size of 1,000, the WER of
the generative pre-training method starts to rapidly increase,
while with hybrid pre-training, we can have a batch size of
10,000 with no degradation in WER. Even at a batch size of
30,000 the WER degradation is minimal.

Having a large batch size implies that the gradient can
efficiently be parallelized across worker machines. It has been
shown that fine-tuning training time improvement by more
than 1.5 results using parallel SGD over serial SGD for the
same batch size of 30,000. In addition, hybrid PT+parallel
SGD provides a large speedup over generative pre-training.
The fine-tuning training time for generative PT with a batch
size of 512, a commonly used size in the literature, is roughly
24.7 hours. With hybrid PT and a batch size of 30K, the
training time is roughly 7.9 hours, a 3x speedup over genera-
tive PT with little loss in accuracy.

Approaches disclosed herein include a hybrid methodol-
ogy to perform pre-training which combined both a genera-
tive and discriminative component. It has been demonstrated
that hybrid pre-training initializes pre-trained weights in a
much better space compared to generative pre-training,
allowing or fewer iterations of fine-tuning. In addition, hybrid
pre-training allows for more generalization compared to dis-
criminative pre-training, resulting in an improvement in
WER. Furthermore, we demonstrated that hybrid pre-training
allows for a larger batch size during fine-tuning, allowing the
gradient computation to be parallelized. Using hybrid
PT+parallel SGD results in roughly a 3x speedup with little
loss in accuracy compared to a generatively pre-trained DBN.

FIGS. 7 and 8 are a flowchart of hybrid pre-training as
disclosed herein. In a deep belief network (DBN), a method
for training the DBN for operational decoding includes pre-
training initial weights based on determined optimal weights,
as shown at step 300. Training is such that the optimal weights
are closely linked to a final objective function of the DBN, the
objective function for the fine tuning stage of training, as
depicted at step 301. Training further comprises pre-training
and fine-tuning stages, the fine-tuning stage further compris-
ing discriminative back-propagation, as depicted at step 302.
The example configuration shown performs hybrid pre-train-
ing, such that the hybrid pre training includes generative and
discriminative pre-training, as shown at step 303. The gen-
erative pre-training is based on unsupervised values, as
depicted at step 304, and the discriminative pre-training
based on supervised values, such that the supervised values
correspond to a label, as disclosed at step 305. Back-propa-
gation further comprises a Restricted Boltzman Machine
(RBM), as shown at step 306.

In the example arrangement, the DBN includes an input
layer 152-11, an output layer 152-14, and a plurality ot hidden
layers 152-12, 13, such that the pre-training further includes
pre-training at least two layers 152. The method replaces at
least one of the layers 152 of the DBN 150 with a randomly
initialized hidden layer. In a particular arrangement, the ran-
domly initialized hidden layer is a softmax layer. The DBN
identifies, during pre-training, a batch size and number of
parameters corresponding to the initial weights, such that the
batch size larger than that allowable for purely generative
pre-training, as depicted at step 307. The larger batch size
without increase in WER allows more efficient paralleliza-
tion. This includes identifying the batch size based on bal-
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ancing Input/Output (IO) of the pre training and an accuracy
level of the training, as disclosed at step 308. In the example
arrangement, it is desirable to provide a sufficiently large
batch size such that the gradient is parallelized efficiently, as
shown at step 309. Such balancing may be based on the
number of invoked parallel machines performing the training,
and the communication overhead between each of the plural-
ity of machines, as depicted at step 310.

The method than invoking the invoked plurality of
machines for performing training in parallel fashion, as dis-
closed at step 311. Parallelization in this manner includes
invoking each of the plurality of machines with a batch size
based on a stochastic gradient, such that the stochastic gradi-
ent defines a subset of training examples, as disclosed at step
312. From the results of each machine, the computed parallel
stochastic gradients are added on a master machine for com-
puting a total gradient for the DBN, as depicted at step 313.
The identified batch size therefore allows parallelization of
the gradient computation without inefficient overhead and
faster than a single, non-parallel machine, as shown at step
314. This involves employing a batch size that is efficient for
parallelization such that it may be performed faster with
parallelization than without, and such that the batch size is not
excessively large such that it is unstable

Those skilled in the art should readily appreciate that the
programs and methods for generating language processing
classes as defined herein are deliverable to a user processing
and rendering device in many forms, including but not limited
to a) information permanently stored on non-writeable stor-
age media such as ROM devices, b) information alterably
stored on writeable non-transitory storage media such as
floppy disks, magnetic tapes, CDs, RAM devices, and other
magnetic and optical media, or ¢) information conveyed to a
computer through communication media, as in an electronic
network such as the Internet or telephone modem lines. The
operations and methods may be implemented in a software
executable object or as a set of encoded instructions for
execution by a processor responsive to the instructions. Alter-
natively, the operations and methods disclosed herein may be
embodied in whole or in part using hardware components,
such as Application Specific Integrated Circuits (ASICs),
Field Programmable Gate Arrays (FPGAs), state machines,
controllers or other hardware components or devices, or a
combination of hardware, software, and firmware compo-
nents.

While the system and method of generating language pro-
cessing classes has been particularly shown and described
with references to embodiments thereof, it will be understood
by those skilled in the art that various changes in form and
details may be made therein without departing from the scope
of the invention encompassed by the appended claims.

What is claimed is:

1. In a deep belief network (DBN), a method for training
the DBN for operational decoding, the method comprising:

pre-training initial weights based on determined optimal

weights;

identifying, during pre-training, a batch size for the DBN

and a number of parameters corresponding to the initial
weights,

wherein:

afirst error rate increase corresponds to the batch size for
the DBN and a second error rate increase corresponds
to a generative, non-discriminative pre-training batch
size,

a first amount corresponds to the batch size for the DBN
and to the generative, non-discriminative pre-training
batch size,
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an increase by the first amount in the batch size corre-
sponds to the first error rate increase for the DBN,

an increase by the first amount in a generative, non-
discriminative pre-training batch size corresponds to
the second error rate increase, and

the first error rate increase is less than the second error
rate increase; and

invoking a plurality of machines for performing training in

parallel fashion.

2. The method of claim 1 further comprising performing
hybrid pre-training,

the hybrid pre-training including generative and discrimi-

native pre-training;

the generative pre-training being based on unsupervised

values; and

the discriminative pre-training being based on supervised

values, the supervised values corresponding to a label.

3. The method of claim 1 wherein training further com-
prises a pre-training stage and a fine-tuning stage, the fine-
tuning stage further comprising discriminative back-propa-
gation.

4. The method of claim 3 wherein back-propagation further
comprises using a Restricted Boltzmann Machine (RBM).

5. The method of claim 3 wherein the optimal weights are
closely linked to a final objective function of the DBN, the
objective function being for the fine-tuning stage of training.

6. The method of claim 2 wherein the DBN includes an
input layer, an output layer, and a plurality of hidden layers,
and wherein the pre-training further comprises:

pre-training at least two layers; and

replacing at least one layer of the DBN with a randomly

initialized hidden layer.

7. The method of claim 6 wherein the randomly initialized
hidden layer comprises a softmax layer.

8. The method of claim 1 further comprising identifying
the batch size based on balancing Input/Output (TO) of the
pre-training and an accuracy level of the training.

9. The method of claim 8 further comprising providing a
sufficiently large batch size such that a computation of a
gradient is parallelized efficiently.

10. The method of claim 8 wherein the balancing is based
on:

a number of invoked parallel machines performing the

training; and

acommunication overhead between each of the plurality of

machines.

11. The method of claim 10 further comprising:

invoking each of the plurality of machines with a batch size

based on a stochastic gradient, the stochastic gradient
defining a subset of training examples; and

adding the stochastic gradient from each of the plurality of

machines on a master machine for computing a total
gradient for the DBN;

wherein the identified batch size allows parallelization of

computation of the gradient without inefficient overhead
and faster than a single, non-parallel machine.

12. The method of claim 9 further comprising employing a
batch size that is efficient for parallelization such that training
may be performed faster with parallelization than without,
and the batch size is not excessively large such that training is
unstable.

13. A computer apparatus for training a deep belief net-
work (DBN) for operational decoding, the computer appara-
tus comprising:

a memory including an input layer for pre-training initial

weights based on determined optimal weights;
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pre-training logic for identifying, during pre-training, a

batch size for the DBN and a number of parameters

corresponding to the initial weights,

wherein:

afirst error rate increase corresponds to the batch size for
the DBN and a second error rate increase corresponds
to a generative, non-discriminative pre-training batch
size,

a first amount corresponds to the batch size for the DBN
and to the generative, non-discriminative pre-training
batch size,

an increase by the first amount in the batch size corre-
sponds to the first error rate increase for the DBN,

an increase by the first amount in a generative, non-
discriminative pre-training batch size corresponds to
the second error rate increase, and

the first error rate increase is less than the second error
rate increase; and

aplurality of machines, each having at least one processor,

responsive to invocation for performing training in par-

allel fashion.

14. The computer apparatus of claim 13 wherein the pre-
training logic is for performing hybrid pre-training, the
hybrid pre-training including generative and discriminative
pre-training;

the generative pre-training being based on unsupervised

values; and

the discriminative pre-training being based on supervised

values; the supervised values corresponding to a label.

15. The computer apparatus of claim 13 wherein training
further comprises a pre-training stage and a fine-tuning stage,
the fine-tuning stage further comprising discriminative back-
propagation.

16. The computer apparatus of claim 15 wherein the opti-
mal weights are closely linked to a final objective function of
the DBN, the objective function being for the fine-tuning
stage of training.

17. The computer apparatus of claim 14 wherein the DBN
includes an input layer, an output layer, and a plurality of
hidden layers, and wherein the pre-training further com-
prises:

pre-training at least two layers; and

replacing at least one layer of the DBN with a randomly

initialized hidden layer.

18. The computer apparatus of claim 13 wherein identify-
ing the batch size comprises identifying the batch size based
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on balancing Input/Output (TO) of the pre-training and an
accuracy level of the training, the balancing being based on:

a number of invoked parallel machines performing the

training; and

acommunication overhead between each of the plurality of

machines.

19. The computer apparatus of claim 18 wherein the com-
puter apparatus is configured to:

invoke each of the plurality of machines with a batch size

based on a stochastic gradient, the stochastic gradient

defining a subset of training examples; and

add the stochastic gradient from each of the plurality of

machines on a master machine for computing a total

gradient for the DBN;

wherein the identified batch size allows parallelization of

computation of the gradient without inefficient overhead

and faster than a single, non-parallel machine.

20. A non-transitory computer readable storage medium
having instructions that, when executed by at least one pro-
cessor, perform a method for employing hybrid pre-training
in a multi-layer neural network, the hybrid pre-training being
operable for setting initial weights closer to optimal weights
than generative pre-training, the method comprising:

pre-training initial weights based on determined optimal

weights;

identifying, during pre-training, a batch size for the DBN

and a number of parameters corresponding to the initial

weights,

wherein:

afirsterror rate increase corresponds to the batch size for
the DBN and a second error rate increase corresponds
to a generative, non-discriminative pre-training batch
size,

a first amount corresponds to the batch size for the DBN
and to the generative, non-discriminative pre-training
batch size,

an increase by the first amount in the batch size corre-
sponds to the first error rate increase for the DBN,

an increase by the first amount in a generative, non-
discriminative pre-training batch size corresponds to
the second error rate increase, and

the first error rate increase is less than the second error
rate increase; and

invoking a plurality of machines for performing training in

parallel fashion.



